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The stationary planar problem of the perturbed motion of the phases of a fluidized bed, which is generated by a rising or sinking 
formation consisting t)f an "adhering" circular bubble and a circular cluster of particles, is considered. An agglomerate of this 
type can serve as a mo~el of the interaction between local inhomogeneities of a bed with different mean densities of the dispersed 
phase and, also, as a model of the transfer of solid particles in the bubble wake in a fluidized bed. The velocity and pressure 
fields of the fluid and .,~lid phases over the whole flow domain are constructed. Conditions for the occurrence of cit~atory flow 
patterns of the fluid phase outside the agglomerate and inside the bubble are investigated. Estimates of the velocity of motion 
of the agglomerate in the bed are obtained using the Davies-ahylor method. 

It is known from experiment that the interaction of inhomogeneities in the distribution of a solid phase 
that differ in the concentration of particles can significantly distort the picture of the relative motion 
of the gas (liquid) and the particles in inhomogeneous fluidized systems. For example, the sinking motion 
of bubbles which are dragged to the base of the bed by having become stuck at the bottom to a dense 
cluster, that is, a so-called "beard" of particles, has been observed [1]. In an industrial column with a 
fluidized bed, the transport of  particles by large bubbles can lead to macrocirculations of the dispersed 
phase and strong dynamic actions on the internal elements of the construction of the devices [2-4]. 

In their turn, the above hydrod3mamic effects generate perturbations in the concentration and thermal 
fields, the analysis of which is an important element of the problem of raising the efficiency of the 
processes carried out in a fluidized bed. 

There are a nmnber of papers ([5-11] and others) which consider the problem of the hydrodynamic 
interactions of  bubbles in a fluidized bed. Both pairwise interactions [8-11] as well as more complex 
systems of bubbles, that is, horizontal or vertical chains of them [5-7], are considered, and the analysis 
is confined to constructing the flow and pressure fields of the phases outside the bubbles. 

In this paper a model of the pairwise interaction of inhomogeneities is extended to the case when 
there is a non-zero concentration of particles in one of them. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  G O V E R N I N G  E Q U A T I O N S  A N D  
B O U N D A R Y  C O N D I T I O N S  

Within the framework of the mechanics of continuous media a fluidized bed is identified with a double 
continuum, and the fluidizing agent and the solid particles are identified with interpenetrating and inter- 
acting continuous media, that is, the phases of the bed which are simulated as ideal fluids. Here, at a micro- 
level, the viscous hlteraction of the gas and the particles is described in the averaged equations of motion 
of the phases as a mass force of interphase friction. We shall confine ourselves to the case when the density 
of the fluidizing agent df  is small compared with the density of the dispersed particles ds: df/ds "~ 1. 

The shape of the agglomerate is shown in Fig. 1, where ab and ac are the radii of the bubble and of 
the cluster of particles, respectively. The agglomerate moves at a steady-state velocity U (in the laboratory 
system of coordinates) in a homogeneous, unbounded fluidized bed in a gravitational field with an 
acceleration g. The principal inertial system of coordinates $1: {O, r, q)} has its origin at the point where 
the bubble and the cluster are "stuck together ' .  In addition to this system of coordinates, systems $2 
and $3 are used in the analysis of the flow pattern inside the agglomerate. The latter two systems are 
obtained by a parMlel translation of $1 to the centre of the cluster and the bubble, respectively. 

We shall assume that the distribution of the dispersed phase inside the cluster is spatially homogeneous 
and we shall confine ourselves to the case when there is no relative motion of the particles inside the 
cluster. 
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Fig. 1. 

We now subdivide the whole flow domain into three subdomains: the exterior of the agglomerate 
(E), the interior of a bubble (B) and the interior of a cluster (packet) of particles (C). We shall write 
the equations of motion and continuity for the phases of the fluidized bed in the above-mentioned regions 
in the approximation of an inertia-less fluid phase (dr = O) and assuming that the interphase friction 
force is linear with respect to the velocity of relative motion of the phases: 

v - w = - k ( e ) V p f ,  dsp(wV)w - - V ( p f  + p~) + dspg (1.1) 

Vv-O,  V w - O  

v t , y  - o - -  t ,y  - V , , '  - 0 

v "  - w "  - - k " ( e " ) V p y '  

(1.2) 

V(p~' + p~) - dsp"g (w" - 0), Vv" - 0 (1.3) 

Here, v, w;,pf, ps; ~ P are the velocities, pressures and volume concentrations of the fluid and solid 
phases, respectively, e + p = 1; k(e) is the coefficient of permeability of the bed, p~b(t) is the pressure 
of the fluid phase within a bubble which is constant in domain B at each instant of time t, and the flow 
parameters within a bubble (cluster) are denoted by a prime (two primes). 

It follows from the second equation of (1.1) that the motion of the solid phase outside the agglomerate 
is the flow of an ideal fluid with a pressurepz = p f +  p, .  This flow is assumed to be potential. 

We denote the boundaries of the bubble and the cluster by Yb and Tc and formulate the boundary 
conditions which the fields v, w, pb Ps must satisfy 

Yb: ~Un " ~',, Wn " O, p f  - p'fo(t), Ps = 0 (1.4) 

¥c: e~n'~"u~' ,  W n ' O ,  P f + P s ' P f + P s  . . . .  (1.5) 

where the velocity components of the phases normal to the corresponding boundaries (the outward 
normal) are denoted by the subscript n. 

As is usually done to these conditions we add the condition of the quasihomogeneity of the bed far 
from the agglomerate 
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Opfl " - J "  aJ° " 

or I® - k($)  -d lOg (1.6) 

where y = r sin cO is the vertical Cartesian coordinate and a)0 is the fluidization velocity, g = [g[, and, 
also, the requirement of the boundedness of the phase velocities over the whole flow domain and the 
homogeneity of phase flows at an infinite distance from the agglomerate 

wl**=_Uig, vl**=(+U-~0)ig, is =g- (1.7) 
g 

Here and subsequently unless otherwise stipulated, the lower (upper) sign corresponds to the rising 
(sinking) agglomerate. 

We now reduce the governing equations, the boundary conditions and the conditions at infinity to 
dimensionless fonrl by taking the following scales: an arbitrary parameter l, which represents the size 
of the agglomerate, is taken as the length scale, the quantity J/ is  taken as the pressure scale for the 
fluid phase, the quantity Ps.., the constant pressure in the solid phase in the quasihomogeneous bed 
remote from the agglomerate, is taken as the pressure scale for the solid phase, and the velocity U of 
its steady-state motion in the bed is taken as the velocity scale. 

The dimensionless equations (1.1)-(1.3) have the form 

v - w = - 8 - 1 V p f ,  Fr(wV)w = - V ( p f  + aps) + ig (1.8) 

Vv = 0, Vw = 0 

Vp~ = 0 --> p~- = O, Vv' = 0 (1.9) 

k"(e") O~' 
V ' ' =  ~-I VeT, V(pT+ (3[p~ = - - "  lg (1.10) k(e) 
Vv'" = 0 

=-UU o=Ps** Fr= 
~o Jl 

The pressure of l~he fluid phase is measured from the quantityp~(t) so that the third bounda~ condition 
of (1.4) is replaced by the conditionpf = 0. 

Next, the third boundary condition of (1.5) and the conditions at infinity (1.6) and (1.7) acquire the 
dimensionless forlnpf + ops = p [  + opt' and, correspondingly 

Op f / ~yl .  = -1 

wl .  = -% v l .  = (+_1 - s-1)~ 

while the remaining conditions of (1.4) and (1.5) retain their previous form. 

(1.11) 

(1.12) 

2. THE FLOW FIELD OF THE SOLID PHASE AND THE PRESSURE 
D I S T R I B U T I O N  OF THE F L U I D I Z I N G  FLUID 

We will construct the potential velocity field w in the domain E outside the agglomerate. The complex 
potential for the flow around a planar contour of the shape under consideration by an ideal fuid will 
be sought by the method of conformal mapping onto a unit circle [12]. 

The required mapping, which preserves the orientation of the coordinate axes, is 

Z~oZ~ ~ ( z ) - z ~  
O 0  

zm (z)  = -izlo zl0zt t (z) - zt0 zi (.o) = (2.1) 

ia 2a 7r~%a c 
zt0 = e x p m ,  zll(z) = e x p - - ,  a = , z = re ~ 

a b Z a b + ac 
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As an analogue of the complex flow potential in the zt-plane, let us consider the characteristic function 
for the flow of an ideal fluid, which is homogeneous at infinity, with a unit velocity in the negative 
(positive) direction of the vertical axis, around a unit circle. We have 

( ')  W(zl ) = +-i zl - -~1 (2.2) 

The complex potential Ws(z) for the flow around the boundary • U Tc of inhomogeneity differs from 
the function W(zl(z)) solely by a factor which ensures that the first condition at infinity of (1.12) is 
satisfied. On combining relationships (2.1) and (2.2) and taking account of what has been said, we obtain 

Ws(z>=+afsina=~l-'k(z,+r1-=L], ~(z) = s h ! z +  i~a  - • , (2_3) 

On separating out the imaginary part in (2.3), we find the stream function of the solid phase in 
domain E 

Im Ws(z ) = ~s(r,(p) = + ashu cos~) - cos(2a / a b - 1)) (2.4) 
ch u - cos 1) ch u - cos(2a / a b - ag) 

2a cos (p 2a sin tO 
r r 

In the limiting case when ac ---> 0 or a b --> O, expressions (2.3) and (2.4) describe the complex potential 
and the stream function of the flow around single circles of radii ab and ac with centres at the points 
/ab, -/ao respectively. 

The pressure distn~oution of the fluid phase in domain E "~ constructed by a method which is analogous 
to the method previously used in [13]. As follows from Eqs (1.8)-(1.10), the functionpf is harmonic 
over the whole flow domain. By virtue of the uniqueness of the solution of the external Dirichlet problem 
Apf = O, Pflvb = 0, the pressure distribution of the fluid phase outside the agglomerate is precisely the 
same as in the problem of the motion in the bed of a single bubble of radius ab. 

Let us now consider the analytic function O(z) = pf* + iph wherepf* is a function which is harmonically 
conjugate with p/~ We identify O(z) with the complex potential of the flow, in a direction which is 
antiparallel to the real axis, of a stream of ideal fluid around the contour of the bubble (on this contour, 
which is a "streamline", Im O(z) = pf = 0 in accordance with the third boundary condition of (1.4) on 
Tb) since, as follows from condition (1.4), the relation 

d,a / dzL. = ap/ / ayL = - 1  

must be satisfied far from the agglomerate. 
On mapping the cavity of the bubble onto the unit circle in the same was as above, we obtain 

¢P(z )=- I z - iah  + z -a~ (2.5) 

whence it follows that the required pressure distribution of the fluid phase in domain E has the form 

( 
p !  (r, q~) = - ( r  sin t 0 -  a b )~1 -- r2 _ 2abrsin 9 + a~ ) (2.6) 

The function which is harmonically conjugate withpf is defined by the expression 

/ °" / 
pf(r,q~) = Re~(z) = -rcoslp 1-~ r2 -2abrsinq~+a ~ (2.7) 
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Note that, among the boundary conditions (1.5), there is no condition for the balancing of the normal 
stresses in the fluid phase on the boundary of the cluster which, in the inertia-less approximation, reduces 
to the continuity of the pressurepf on Yc. This condition has been considered previously [14, 15] when 
analysing the motion of single inhomogeneities (dusters of particles with different concentrations) in 
a fluidized bed. While being non-contradictory in simple eases, it is now incompatible with the assump- 
tions regarding the properties and motions of the phases which have led to the system of equations of 
motion and continuity (1.8)--(1.10) in the more complex model of the interaction of inhomogeneities 
which is being considered here. 

Actually, the velocity field of the fluid phase in domain E is uniquely constructed (the first equation 
of (1.8)) by invoking relationships (2.4) and (2.6) which yield the velocity field of the sofid phase and 
the pressure of the fluid outside the agglomerate. Under the assumption that p f  = p~on Yo we obtain 
that the fluid phase pressure field inside the cluster is also described by expression (2.6). Then, the fluid 
velocity in domain C is also uniquely found from the first equation of (1.10) and it is imposs~le to satisfy 
the natural condition of the conservation of the flow rate of the fluid phase through the discontinuity 
Tc (the first boun&try condition of (1.5)). 

The fact is that l~e system of boundary conditions (1.4) and (1.5) with the inclusion of the condition 
ofp  on y~ mentioned above, which is written in the approximation df  = 0, does not take account of the 
ine~ial effects on solid phase concentration discontinuities. Meanwhile, we know [16, 17] that similar 
effects have a significant influence on the flow patterns even in rarefied systems. 

In order to take account of the above-mentioned effects indirectly, let us assume that a transition 
layer (the thickne~ of which is negligibly small compared with the size of the agglomerate) is formed 
on the boundary of the cluster Yc and that the inertial terms in the equations of motion of the fluid 
phase predominate in this transition layer. In this case, the solution in the transition layer, which can 
be obtained using the methods proposed in [18], matches the pressure distributions pf and p~ so that, 
without taking account of the transition layer, the fieldpf is discontinuous on the boundary of the cluster. 

The harmonic fimctionp~, which is now not associated with the condition of continuity on Yc, is found 
by solving a Neumann problem with the boundary condition 

 PT_ ,, ek 
Y": ~n - - ' - k  7 ; ~  = - k " e  "-'7~" = e"k'-------; 8n 

since, on the bourLdary of the cluster ~. = --5=(~ji~n) and, by virtue of its impermeability in the case 
of the dispersed phase: w,, I Tc = 0. Here, the criterion for the Neumann problem to be solvable [19], 
which has the forca 

 ,=at % ,,oa/=o 

is satisfied since it has the simple physical meaning that there are no sinks or sources of the fluid phase 
in domain E. 

It is convenient to obtain the distribution p[  initially in the system $2, since the equation for the 
boundary of the cluster has the simplest form in this system: "k: r = ac, so that B/Bn = B/~r. B y  displacing 
the origin of coordinates to the centre of the duster and using expression (2.6), we obtain 

[(~,+ 1) 2 + l ] s i n g -  2(X+ 1) ~. _ at, 
OPf-I =-Z(~o), Z(~)=sintp+2L2 [ (k+l)  2 -2 (k+ l ) s in~o+l ]  2 '  - a--c- (2.8) 

The harmonic t~anetion p~' can now be established, apart from a constant, using Dini's integral [20] 

t t a i t  I c_ lnlzl - z l d t  = 

= a c e.k n 
2 _ 2ra~. cos(tp- t )]dt  5 X(t)in[ r2 +ac 

2x ~ " k " - n  (2.9) 

(zl = aa~/t and the previous notation is retained for the new variables). 



116 N.N. Bobkov and Yu. P. Gupalo 

Returning to the initial frame of reference, we can write the pressure distribution of the fluid phase 
inside the cluster in the form 

O c F~ x 
P'f'(r'to)=2~ E"k'" ~ Z(t)ln[r2 +2racsinto+2a2-2racc°s(to-t)-2a2csint]dt (2.10) 

3. THE FLUID PHASE FLOW FIELD 

We will construct the fields v, v', v ° using the results obtained in Section 2 and the governing equations 
(1.8)-(1.10). In fact, they determine the pattern of the perturbed gas flow in the neighbourhood of the 
agglomerate and the local characteristics of heat- and mass-transfer processes in the fluid phase. 

Theflow o f t h e ~ ' g  agent outside the agglomerate. It follows from the first equation and the last 
two equations of (1.8) that the stream functions of the phases are connected in domain E by the 
relationship ~ / =  ~ ,  + ~-lpf. Hence, from expressions (2.4) and (2.5), we obtain 

ashu cos1)-cos(2a/ ab-1))_8_trcosto(l_ t a 2 1 ~/(r ,  to)=+ 
chu-cos1) c h u - c o s ( 2 a / a  b -1)) [, r 2 -2ra  b sinto+a 2 J 

(3.1) 

An analysis of this relationship shows that, as in the simpler models [13, 14], a so-called "cloud" may 
be formed in the neighbourhood of the interacting bubble and cluster, which is a region of closed 
circulation of the fluidizing agent. The boundary of this region is impermeable to the fluid phase and 
represents a zone of enhanced resistance to mass transfer into the bed. The clouds formed around fairly 
rapidly rising agglomerates, that is, when the inequality 1)0 < U < +oo (1 < 5 < +oo) holds. If the velocity 
of ascent of an inhomogeneity is less than the fluidization velocity:. U < ~ or, when it is sinking, no 
domain of closed circulation encompassing the agglomerate is formed. 

The boundary of the cloud is defined by the equation 

a shu cos D-cos(2a/ab-1))_8-,rcosto(l_ ~ a ~ )  
ch u - cos 1) ch u - cos(2a / a b - 1)) r 2 - 2ra b sin t O + a 2 = 0 

(3.2) 

When U = ~0 (5 = 1), the cloud occupies the whole of the domain E and, at higher rising velocities its 
boundary is located close to the surface Yb U Tc of the agglomerate, with which it coincides when U 
u0 (5 -, +-). 

In the other limiting case ac ~ 0, it follows from formula (3.2) (after changing to the system of 
coordinates $3) that 

_ fS+lh H 

which is the well-known result obtained by Davidson [21] for the radius of the cloud around a single 
bubble of radius ab. 

The change in the configuration of the cloud as a function of the velocity of ascent of the agglomerate 
is shown in Fig. 2 for the case when ab ---- ac ffi 1 (the values 8 -1 = 0.1, 0.4, 0.6, 0.7, 0.8 correspond to 
curves I-5). 

The streamlines of the fluid phase in domain E, which are described by the stream function (3.1), 
are shown in Figs 3-5 for a cluster radius ac = 1 and a bubble radius ab = 2 (Fig. 3), ab ---- 1 (Fig. 4) 
and ab ffi 1/3 (Fig. 5) for three sets of flow conditions: fast rising (~" = 0.4), slow rising (6 -1 = 1.1) and 
Sh~kin~ (~--I _ 0 .5 ) .  

The values of the stream function, in order of increasing curve number in Figs 3-5, are: ¥[ = 0.8, 
0.4, 0 (the cloud boundm7), -0.3, -0.5, --0~53, -0.57, -0.8, -1.2, -1.4, -1.6 (Fig. 3), ¥[ -- 0, -0.3, -0.5, 
-0.7, -0.9,-1.03, -1.1, -1.28, -1.3,-1.33, -1.5, -1.7, -1.9, -2.1, -2.2 (Fig. 4), ¥ / - -  0, -0.15, -0.3, -0.45, 
-0.6, -0.9, -1.5 (Fig. 5). 

It can he seen that closures of the flow of the fluid phase on the surface of the bubble and the cluster 
are a characteristic feature of the rising re~mes. However, in the case of fast rising (0 < 5 -1 < 1), 
perturbations of the form shown are localized within the boundary of the domain of closed circulation. 
Outside this domain the geometry of the streamlines corresponds to the flow around a cloud as a kernel 
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Fig. 2. Fig. 3. 

with a solid boundary which is given by (3.2). In the limiting case U ~ ~0, when the boundaries of the 
cloud and the agglomerate are the same, the closures which have been described have no effect on the 
transport of the reagents from an inhomogeneity to adjacent segments of the bed. Slowly rising 
agglomerates perturb the uniform flow of the fluid phase more si~ificantly, and large regions of the 
bed adjoining its boundary are involved in convective gas exchange with the inhomogeneity. 

Note that, as in the case of interacting bubbles [8], there is a fluid flow which binds the interacting 
bubble and cluster. It is partly concentrated in the neighbourhood of the point where their boundaries 
join and also (in the case of rising agglomerate) in the neighbourhoods of the upper and lower extremities 
of the agglomerate. 

Sinkirlg inhomc,geneities, as is obvious from the results presented in Fig. 5, only slightly perturb the 
uniform gas flow which maintains the bed in a fluidized state. 

The flow of the fluid phase inside the bubble. The second equation of (1.9) is the principal equation 
which describes the gas flow inside the bubble. This equation defines the required flow field non-uniquely. 
This is due to lo~es of information concerning the vorticity of the flow in domain B in the inertia- 
less approximation df = 0. Here, in order to take account directly of the inertial nature of the 
fluid phase, we specify that rot v' = a, within the bubble, where a is an arbitrary solenoidal vector. After 
this, as we know [22], it is possible to establish the vector v' itself uniquely using its normal component 
~nlTb = ~lTb,  which is found from the first boundary condition (1.4) using the result (3.1). The 
supplementary condition for this problem to be solvable ~Tb~'ndl = ffB V~'ds is satisfied in view of the 
solenoidal nature of the field v' and the fact that there are no singularities inside the bubble. 

The simplest solenoidal vectors, which are considered below as a, are affi0 and a = const. The first 
case corresponds to irrotational flow of the fluid phase inside the bubble and the second to its flow 
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Fig. 4. Fig. 5. 

with a constant vorticity [23] (in both cases, the fluid phase velocity v' is finite everywhere inside the 
bubble). 

1. a = 0. In this ease v' = Vq~, where tp~ is the potential of  the gas flow in the domain B. Since the 
fields v, w, pf  outside the agglomerate are related by the first equation of (1.8) and, on the bubble surface, 
the field w satisfies the botmda~y condition wn = 0, we obtain the following Neumann problem for finding 
the potential (p~ 

3q¢I =-eS-' 3p f (3.3) A~0~=0, z ~ B ;  Yb: ~n ~n 

T h e  solution of problem (3.3), which is found using the Dini integral by means of relationships (2.5) 
and (2.6) in the frame of reference $3 with the origin at the centre of  the bubble, has the simple form 

tp~ (r, Ip) = 2~8-1r sin tp (3.4) 

As a result of (3.4), for the stream fimction of  the fluid phase inside the bubble, we obtain 

yf(r,q)) = tp! (r, cp) = -2~ i  rcosq~ = -2ez  (3.5) 

where x = r cos ¢p is a Cartesian coordinate in $3. 
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Hence, irrotational flow of the fluid phase inside the bubble is a homogeneous flow with a velocity 
which runs through the bubble in an upwards direction from below in all forms of the agglomerate 

motion (see Fig. 6). 
As might have been expected, we note that, since the boundary condition for the conservation of the 

flow rate of the fluid phase is satisfied on the discontinuity 3~, the resulting flow is topologically consistent 
with the gas flow outside the agglomerate (in this case the stream function yf  is discontinuous on the 
boundary of the bubble). Actually, it. is clear from (3.1) that the streamlines o f  the external flow, which 
intersect with,Tb "pierce" the bubble at points lying on vertical straight lines. 

2. We will now consider a more complex model of the flow of the fluid phase inside the bubble and, 
in fact, we will assume that curl v' = a ~ 0, a = -kI', where k is the unit vector normal to the plane of 
flow and F is a parameter which characterizes the vortex strength in domain B. It now follows from the 
basic equation Vv' -- 0 that the stream function of the fluid phase inside the bubble satisfies Poisson's 
equation 

A¥~ = F (3.6) 

Remaining in the frame of reference $3, we introduce the auxiliary function 

W(r,q~) = W~(r,q~)- I'r 2 / 4 

into the treatment. 
result of the fact that &,~2 = 4, from Eq. (3.6) we obtain Then, a s  a 

AW = 0 (3.7) 

that is, ~F is harmonic function in domain B. Next, writing the condition for the conservation of the 
flow rate of the fluid phase on the boundary of the bubble in terms of the stream function ~1~ we arrive 
at the following boundary condition for the function ~P: 

Yb: ~F = -2ab~S -I cosq~ - F a  2 / 4 (3.8) 

The solution of problem (3.7), (3.8) with the appropriate condition at infinity has the form 

~F(r, q~) = -2e6-1r cosq~- I'a 2 / 4 

whence we obtain the following relation for the stream function 

~ (r,q~) = F ( r  2 - - a b  2 )  / .4 -- 2~5-tr cos cp (3.9) 

Since, in the model of constant vorticity of the field v' inside the bubble being considered, there is a 
preferred direction which is determined by the sign of F, the streamlines cease to be symmetrical about 

l 
Fig. 6. 

t 
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the ordinate axis (there is symmetry about the abscissa axis). They are arcs of concentric circles with 
centre at the point (4¢5-'/I', 0) on the abscissa axis. 

The gas flow pattern inside the bubble in the case when F > 0 is shown in Fig. 7 (when F < 0, it is 
a specular reflection in the ordinate axis) for ab = 1. If 4¢5-1/I" ~> ab = 1 (a small positive vorticity F), 
the streamlines are weakly curved arcs (Figs 7a and b). In the limit as F --> 0, we obtain streamline 
pattern of irrotational flow (Fig. 6). If, however, the vortex scale exceeds the boundary value F. = 4¢5 -1, 
there is a circular zone with closed streamlines inside the bubble, and the zone size is greater for greater 
F (Fig. 7c). In the limit as F - ,  +~o, the circulation domain fills the whole bubble from within. Its radius 
is given by the expression aa = 1 - 4¢5-1/I ". 

If the parameter 1" is fixed, then, for agglomerates with velocities of ascent U > 4~0/I', the flow of 
the fluid phase in domain B is non-circulating while, when U < 4e~0/I', it is a circulatory flow. 

3. In conclusion, we will consider a discontinuous vorticity distribution of the fluid phase in domain B 
of the following form: rot ~' = -sign(x)ld" and F > 0 as in case 2. The auxiliary function ~F is now introduced 
by the equality ~F = ~ f  +_ Fr~/4, since A~ ' f  = 4-F (alternation of the signs corresponds to a transition 
from the right half of the bubble to the left half). The boundary conditions for the function ~F on the 
bubble surface take the form 

Th : ~F =-2aj ,  e5 -I cosg~:Fa 2 / 4  (3.10) 

The solution of the boundary-value problem (3.7), (3.10) with the appropriate condition at infinity 
yields the following expression for the stream function of the fluid phase 

V~(r ,  cp) - 
-2 6-1rc°scP r"2 

O, x - 0  

~ c o s ( 2 n + l ) c p ± ~ - r  2, x a O  (3.11) 

and, moreover, here the convergence of the series can be speeded up using well-known methods [20]. 
It follows from (3.11) that the pattern of the streamlines of the fluidizing agent in the case of the 

vorticity distribution inside the bubble under consideration is symmetrical about the Cartesian coor- 
dinate axes. The nature of the dependence of the flow pattern on the magnitude of the parameter F is 
analogous to that considered above in case 2. The critical value F. of the vorticity which subdivides the 
non-circulatory (0 < F ~< F.) and circulatory (F. < F < +oo) patterns of the gas flow through the bubble 
is as follows: I'. = 4 ~ - 1 / ( g  - 1). 

The streamlines of the fluid phase in the bubble under these two sets of conditions are shown in Figs 
8a and b for a value of eE -1 = 0.45. Here, F. ~ 2.64 and the magnitudes of the vorticity scale in the 
cases indicated are taken as being equal to F = 0.5 and 10, respectively, and ab = 1. The values of the 
stream function on the curves in increasing order are: ~1~ = 0, -0.2, -0.4, -0.6, -0.8, -0.9 (Fig. 8a) and 
~l~ = 0, -0.1, -0.4, -0.6, -0.9, -1.05, -1.2, -1.3, -1.35, -L36 (Fig. 8b). 

The boundary of the circulation domain is defined by (3.11) when ~1~ = ¥2E8- ab. In the limit as F 
-~ ~, symmetric vortices fill the corresponding halves of the bubble. It becomes impermeable to the 
external flow, and the additional resistance to the transfer of reagents in the fluid phase is concentrated 
on its boundary. The limiting position of the streamline, which is generated at a point on the abscissa 
axis, is specified by the equation r ~ + r - 2/g = 0, which has a single positive root r,. - 0.51. 

Fig. 7. 
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Fig. 8. Fig. 9. 

More complex models of the vorticity distn3~ution inside a bubble such as, for example, the competition 
between vortices r'l and 1"2 when they have a different strength and direction, can also be treated in 
the same way as in cases 1-3. The values of the free parameters in models of this type can be determined 
from some additional conditions on the agglomerate boundary (certain continuity conditions [23], for 
example) which relate the external and internal flows of the fluid phase. 

Gas flow/ns/de the duster. It follows from the first equation of (1.1) that the relation between the 
stream function and the pressure of the fluid phase in domain C is given by ~1~ = -kOk-18-1P/"*. Using 
(2.9), we find that, in system $2 

X 

l(r,¢O) = - ! Z(t)arg(zm -z)dt 
-- "IC 

(3.12) 

The level lines of the integral l(r, ?) are shown in Fig. 9 and provide a complete representation 
regarding the potential flow of the fluidizing fluid inside the cluster of particles. The corresponding 
values of the functJLons I(r, ~0) on curves 1-6 are 0, -0.78, -1.56, -2.32, -3.06 and -3.59. 

The irrotational gas flow in domain C, where the solid particles are fixed with respect to one another, 
is characterized by the absence of closed streamlines under all forms of motion of the agglomerate. 
More complex (and, in the case of low concentrations p", more realistic) models of the particles inside 
a cluster and, in particular, a model of the solid phase motion inside a cluster with a constant vorticity 
similar to that considered for a bubble above may be treated. In the models, the question of the possibility 
of the closure of the streamlines of the fluidizing fluid within a cluster requires further investigation. 

4. THE PRESSURE DISTRIBUTION FOR THE SOLID PHASE. 
ESTIMATE OF THE AGGLOMERATE VELOCITY IN THE BED 

Starting from the analogy between a fluidized bed and conventional fluids [1-3], let us assume that 
the direction of motion of an agglomerate in a bed is defined by the ratio of the Archimedes force and 
the gravity force acting on the particles which form the cluster and which are concentrated in domain 
C. Let Sb and Sc be', the areas of domains B and C, respectively. Then, an agglomerate rises (sinks) in 
the bed when the condition 
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(Sb + Sc)P ~ P"Sc (4.1) 

is satisfied or, what is the same, when p"/p <> 1 + k 2. In particular cases of the motion of a bubble or 
of a cluster, relation (4.1) remains true. The situation when the agglomerate is in equih'brium in the 
fluidized system corresponds to equality of the left- and fight-hand sides of (4.1). 

The equations of motion of the solid phase outside the agglomerate and inside the cluster have simple 
integrals 

Fr  
Pz = P f  + ~ P s  = Pzo +(is , r)  - - w 2  

2 (4.2) 

P P  

7 . . . .  P ( i g , r  p z = p  +~ps = p~:o + ) (4.3) 

where PzO, P ~  are certain constants. 
In the model under consideration as well as in simpler problems concerning the motion of 

inhomogeneities in a fluidized bed (and even in single phase fluids) [13, 15], the condition for the balance 
of the normal stresses in the solid phase cannot be satisfied everywhere on the boundary 3'b U 3'c by 
means of expressions (4.2) and (4.3). Here, we shall use the Davies-lhylor procedure [24] which is usual 
in similar cases, that is, we shall construct a solution which satisfies the above-mentioned conditions 
locally in the neighbourhood of leading critical points (pointsA b andAc for a rising and sinking agglo- 
merate, respectively) as the result of a suitable choice of the Froude number which characterizes the 
rate of motion of the agglomerate in the system. 

The velocity distributions of the solid phase on the surface of the bubble and the cluster are found 
from relation (2.4) and have the form (system $1) 

w21vb = (a-a]4 sil4 q sin2 a-ash2 (~-b ctg tP/ Ichl  a----etgtp/- cos ta  ] -4 
L Lab ) abj 

ab ~,ac J L ~. ac J ab.] 

(4.4) 

Determining the constants in (4.2) and (4.3) from the continuity conditionspz I~ (Ab) ---- O,P~ [¥c (¢~c) 
-- P~I ~c (Ac) and subsequently expanding the jumps in the total pressure Pz on flie boundaries of the 
bubble and the cluster close to the corresponding critical points using expressions (4.4), we arrive at 
the following estimates for the velocities of ascent (4.5) and descent (4.6) of the agglomerate 

3 2 -I oos --I 
~ . a )  \ ab )  \ abJ 

(4.5) 

a 3 a ~ 2 (  a ~  -I 

(4.6) 

A s  a c --> 0, Eq. (4.5) has the form U = 1/2~(gab) and is identical with the well-known result obtained 
by Davidson for a single circular bubble [21]. In the other limiting case when ac --> O, the estimate of 
the velocity of descent of a single circular cluster with a solid phase concentration p" > p: Uc = 
1 / 2 ~ ( g a c ( p ~  1)) follows from (4.6). A cluster with the limiting density (p" = 1) sinks with a terminal 
velocity Uc(p = 1) = 1/2~l(gac(1 - p)/p). 

5. THE CASE OF A NON-DEGENERATE BOUNDARY BETWEEN THE 
BUBBLE AND THE CLUSTER 

The formulation of the problem of an interacting bubble and cluster proposed in Section 1 can be 
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extended to the ease when they are deformed so that the shape of the agglomerate is a combination 
of two segments of circles of radii ab and ac which have a common base of length 2h (Fig. 10). As the 
system of coordinates, let us take a system of bipolar coordinates (~, 11): ~ = 01 --02, 11 = ln(rgrO with 
poles at the points (--h, O) on the abscissa axis of the Cartesian system xOy. 

The degree of de:formation of the bubble and the cluster is represented by the parameters nb ¢ [0, 1], 
nc ~ [1, 2]: h = ab ',;in ~n b = -a~ sin rcn~. 

The system of equations of motion and continuity of the phases in domains E, B and C as well as 
the conditions at hafinity are retained in their previous form (1.8)-(1.12). To the syste m of boundary 
conditions, we add the conditions of conservation of flow rate of the fluid phase and of the balance of 
the normal stresses on the segment of the boundary Y between the bubble and the cluster 

• J !  f r  

T: a)~=e ~n, p'/=O, p ' f=O (5.1) 

The conformal mapping of the interior of the lune, which specifies the shape of the agglomerate, 
onto the unit circle, which is analogous to the mapping (2.1), has the form [25] 

e~ _ e-ib 
z l ( ; ) = i e  e° "~ -__--~, zl(**) =0. (5.2) 

where 

2 - n  c ~= ~ + ~ ( 2 - n c )  
b=rc 2 - n  ' 2 - n  

n = n  c - n  b, z=ihc tg  

, 

The limiting form of this expression as h ~ 0 (a b and ac are fixed) is identical with (2.1). 
Next, the analogue of the complex flow potential (2.3) of the solid phase in domain I outside the 

agglomerate is written, using (5.2), in the form 

Ws(;)= T- h F" s_h~ s h ( a - i b ) ]  
( 2 _ n ) s i n b L s h ( a _ i b )  ~ ~ .J 

o /(4 
(5.3) 

#(¢, ¢) 

ab 

P 

Ac 

Fig. 10. 
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and the corresponding expression for the stream function is obtained by separating out the imaginary 
part in (5.3) 

~Fs(~,rl)= + h shu cos1}- cos(2b + 1}) (5.4) 
2 - n  chu-cos1} chu-cos(2b+1})  

U---- 1}---- 
2 - n '  2 - n  

By mapping the segment of  the bubble onto the unit circle, we can construct the analogue of the 
potential (2.5) 

~ ( ; )  = ih ~shtx I sh~ 2 ) 
(! + nb)sintx 0 ~shtx 2 shtx I 

= ~ ,  Of, I - - - - - - ,  C£ 2 m -  
eg0 l+nh 2(1 ÷nb) 

i(~+27t) 

2(1+ n b) 

Hence the pressure distribution of  the fluid phase outside the agglomerate and the corresponding 
adjoint function have the form 

7t sin 1}z / cos 1}1 - cos(ao + 1}1 ) (5.5) p / (~ ,  11) - h ctg a - 
l + n  b l + n  b chu I - cos1}  I j  chu l -cos (a0+1} l )  

= - - ,  1} 1 = - -  
Ul 1 + n b 1 + n b 

h shu I 
p*f(~,l])= l + n b  chul-cos1}l  

2 ch u I - cos 1}1 - c°s( tz0  + 1}1 ) 

ch u I - cos(~ 0 + 1}1 ) 
(5.6) 

By combining relationships (5.4) and (5.6), it is possible to obtain an expression for the stream function 
of  the fluid phase, analogous to (3.1) and which, in the limit as h ---> 0, reduces to it. As before, a cloud 
with closed streamlines only exists in domain E when 0 ~< ~--1 < 1,  t h a t  i s ,  in the case of inhomogeneities 
which are rising sufficiently rapidly. 

Below, we shall consider the special case nc = 1 + nb (n = 1) when the agglomerate is a circle of  
radius ab = ac, the upper part of  which is occupied by the bubble and the lower part is occupied by the 
cluster of  particles. Such a model of  a bubble with its wake has been investigated, for example, in [25] 
when analysing the rheological properties of  fluidized systems. Putting ab = ac = 1, we find 

r 2 - 2rsin ~0 cos ~n b - sin 2 ~ b  
~Ff (r, (p) = +rcos  tp r2 -- 2r sin cp cos gn b + cos 2 7r~ b 

F 

- 8  -I sinnnb s h u J  1 
1 ÷ n b ['ch u 1 - cos 1}~ 

4 

ChUl_COS / 2~t +1}J 
[ . l+nb 

where, in accordance with (5.5) and the definition of  bipolar coordinates 

2rhcostp 
t h [u l ( l+nb)]= th l]= r2 +h  2 

2rhsinq~ 
t g [ 1 } j ( l + n b ) ] =  tg~  = r2 - h  2 

(5.7) 
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where r and ¢p are l~olar coordinates (Fig. 10). 
The flow pattern of the fluid phase outside the agglomerate in a circulatory regime when ~-1 __ 0.9 

is shown in Fig. 11 as an example for n b =  0.5; the corresponding values of y f fo r  curves 1-10 are 0, 
-0.1, -0.4, -0.7, -1.0, -1.2, -1.3, -1.39, 0.1 and 0.2. 

Note that, in the model of an interacting bubble and duster under consideration, the field w has no 
singularities on the boundary Yb U ¥c only if n e (1, 2], that is, in the case of "apple-like" shapes of 
agglomerate. On "lentil-like" contours (n ¢ [0, 1)), this field is unbounded in the neighbourhood of 
the poles of the biI~31ar system. As far as the velocity field v of the fluid phase is concerned, this always 
has singularities at the points of the boundary of the agglomerate indicated. The fact is that the segment 
of the bubble when all n ~ [0, 2] has two sharp edges (an internal angle < ~). The singularity in the 
field v referred to here is a consequence of the general theory of mappings of contours with comer 
points [12, 27]. 

As previously, the internal boundary-value problems in domains B and C are correct. For instance, 
for a fluid phase pressurep~ inside the cluster, we obtain, basing on the conditions (1.5) and (5.1), the 
mixed problem 

=  P'I 
~n ~'~ k 8" ~n 7c 

which has a unique solution [28]. The velocity field af" is now determined by the first equation of 
(1.10) and }~vv~'~dl = 0 since there are no fluid phase sinks and sources inside the duster. On satisfying 
the conditions of conservation of the fluid phase flow rate on the boundaries Tc and 7, we find from this 
(the integrals converge) 

0 = I ~ d l  + I 9"dl  = ~,"-7 I "on dl + I 9"n dl = ~ E 9ndl + I 9"dl  
"¢c ? Yc Y ? 

(5.8) 

On now taking account of the fact that ~uz ~)~dl = 0 for the external fluid phase flow field and, also, 
the fact that the outward normals to the clo'~e~ contours Yo U 7 and 7c U y on the contour y are opposite, 
we obtain 

(a) (b) 

I ~ I "'~.~ 
I ~ 0 
I 

0 

Fig. EL. Fig. 12. 
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x)'ndl = ~ x)'ndl + J O'_ndl = ~ ~ ~)ndl - ~ x)~dl = -(~. ~ X)ndl + ~ D'nal) = 0 
YbVY Yb Y 7b 7 re 7 

and the field v" inside the bubble can be established using the earlier scheme (Section 3). 
The results of  a qualitative analysis of the irrotational field v" inside the cluster (n = 1) are shown 

in Fig. 12. As follows from relations (5.4) and (5.6), the streamlines of the fluid phase on the side of 
the cluster are normal to the boundary T between it and the bubble. Furthermore, an investigation 
of the stream function (5.7) on the boundary of the agglomerate shows that, as the fraction of the 
bubble in the agglomerate becomes smaller, the flow pattern undergoes a qualitative change when n b =  
rib. ---- [g -- arC.COS 3/4]/[~ + arccos 3/4]. The gas flow through the cluster for 0 <nb < rib. (Fig. 12a) is 
replaced, when rib. < n b  < 1, by a more complex flow: part of the flow departs from the cluster 
into the surrounding bed while another part enters into the cluster and, subsequently, into the bubble 
(Fig. 12b). 

As previously, the solid phase pressure distribution in domain E is described by expressions (4.2) 
and (4.3). Here~ . . . .  by virtue of the second boundary condition of (5.1) and the fact that (',~ r) [ T =0, the 
boundary condition p~' = 0 m exactly satisfied on the common segment of the boundary between the 
bubble and the cluster. 

The velocity distribution of the dispersed phase on the boundary of the agglomerate has the 
form 

w21yb 4(chTI--COS~b) 2 sin2 bsh2 I] = 2 - n  

(2-n)4 ch ~ +cosb 
2-n 

w21~ = 4 ( c h ~ -  cosrmc) 2 sin2 bsh2 2 - n  

(2-n)4 ch 11 -cosb 
2-n 

On satisfying the third condition of (1.5) for p~' in the neighbourhood of the critical points A b and 
Ac,  we obtain, by the Davies--Taylor method, the following estimates for the rising (5.9) and sinking 
(5.10) agglomerate (in dimensional form) 

(2  - n)  3 (1 + cos b) 2 (cos Ttn b + 1) 

U = 2 s i n b s i n r t n b ( 1 - c o s ~ n b )  g~b (5.9) 

U = - 2 sin b sin ~n c ( 1 - cos ~ c  ) gac - 1 (5.10) 

which reduce to (4.4) in the limit as h --~ 0. 
Condition (4.1) for a rising (sinking) agglomerate in the model under consideration has the form 

p'" _jL2 7t (1-nb)+sinTtnb c°sTtnb 
~ 1  
p It(1 -- n c ) + sin 101 c cos rtn c (5.11) 

The estimates (4~), (4.6), (5.9) and (5.10) are illustratexl in Fig. 13 for p" > p when, depending 
on whether conditions (4.1) and (5.11) are satisfied, the agglomerate can rise or mxk in the bed. In 
the first case, the stability of the frontal part of the bubble is ensured at a rising velocity which is 
determined by means of (4.5) and (5.9) and only by the configuration of the inhomogeneity and is 
independent o f  the concentration~vf particles in the cluster. In the second case, the dependence of the 
velocity of steady sinking of the agglomerate on its density reduces to a factor ~(p"/p - 1) in formulae 
(4.6) and (5.10). 
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Fig. 13. 

Curves of the ratios U/Ub (curve 1) and U/(Ub~(p"/p - 1)) (curve 2) of the velocities of the agglomerate 
and of a single bd~ble of radius ab as a function of the size of cluster ac for p = 0.5, p" = 0.6, ab = 1 
are shown in Fig. 13a. 

The boundary value ac., which separates,rising inhomogeneities (ac < a~.) from sinking ones 
(a~ > ac.) is defined by the equation Z2 + 1 = p/p.  The threshold effect of the concentration of particles 
in a duster on the velocity of motion of an agglomerate is a charaeteristic feature of the curves in 
Fig. 13a. The fact that there is no other relationship between its velocity of ascent and p", apart from 
the balancing relation (4.1), is justified within the framework of the theory of ideal fluids, and the model 
which excludes internal motion of particles in the cluster when the solid phase slip on its surface is per- 
mitted and the external pressure field Ps depends solely on the geometrical characteristics of the 
inhomogeneity. 

In the case of a non-degenerate boundary between the bubble and the cluster in the special case 
when n = 1, which was considered above, n b is the sole shape factor determining the configuration 
of an inhomogeneity. In accordance with condition (5.1), its threshold value, which separates rising 
agglomerates from sinking ones, is given by the equation 2nnb - sin 2nnb - 2r~p"/p = 0 which, when 
p" > p, has a root nb. E (0, 1) (for p = 0.5, p" = 0.6, we have rib. ~ 0.69). In this case, the velocity 
of ascent (descent) of an agglomerate according to estimates (5.9) and (5.10) is identical with the 
velocity of ascent of a bubble (the velocity of descent of a single cluster) of equal size (Fig. 13b, 
curves 1 and 2). 
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